Novel Applications of Soft X-ray Scattering for Condensed Matter Studies

Sunil K. Sinha
UCSD/LANL
ALS, Berkeley, Sept. 2005

Scattering Techniques with Soft X-Rays

- Resonant Bragg scattering and satellite peaks: long and short range order and modulations (orbital, magnetic).
- Resonant diffuse Scattering: local distortions of lattice, magnetic and electronic structure.
- Resonant magnetic reflectivity and off-specular scattering: Magnetic structure of interfaces and thin films.
- Resonant Small Angle Scattering; Spatial distribution of bonding states.
- Resonant Inelastic Scattering: Electronic Excitations.
- Coherent Soft X-Ray Scattering: Imaging; Dynamics

Applications

- Magnetic Thin Films: Exchange bias problem; Spin Injection in semiconductors; GMR.
- Complex Oxides: Hole ordering; Orbital Ordering; Electronic modulations in High-Tc superconductors.
- Strongly correlated Systems: Kondo Lattices; Quantum Critical Phenomena.
- Soft Condensed Matter: polymer structure and surface dynamics of liquids and biomembranes.

The Exchange Bias Phenomenon PHYSICAL REVIEW VOLUME 105, NUMBER 3 FEBRUARY 1, 1957 New Magnetic Anisotropy W. H. MEIKLEIOHN AND C. P. BEAN General Electric Research Laboratory, Schenectady, New York (Received October 15, 1956) \mathbf{FM} M HIMULTIPLY BY 103) Н \mathbf{FM} **AFM** H_{E}

W.H. Meiklejohn, C.P. Bean, *Phys. Rev.* **105**, 904 (1957).J. Nogués, Ivan K. Schuller, *JMMM* **192**, 203 (1999).A.E. Berkowitz, K. Takano, *JMMM* **200**, 552 (1999).

▶ EB vanishes above T_N; Must be related to the AF

The formula does not represent reality!!

Does not explain why exchange bias is observed for compensated AF surfaces like Fe/FeF₂

Does not realistically represent the FM/AF interfacial environment

Various models proposed:

- ✓ Random Field Model (Malozemoff, *Phys. Rev.* B 35 (1987) 3679)
- ✓ Domain Wall Model (Mauri et al, J. Appl. Physics 62 (1987) 3047)

Random-field, domain state, etc., models Super exchange (AF-coupling) Frustrated super exchange (AF-coupling) -'ve H_F +'ve H_F 10nm_•

U. Nowak et. al., *J. Magn. Magn. and Mater.*, **240**, 243 (2002). A.P. Malozemoff, *J. Appl. Phys.*, **63**, 3874 (1988).

Interfacial Spin Structure is a key to understand EB

- ✓ Interface properties could be very different from bulk
- ✓ Roughness could be a source of AF uncompensated moments
- ✓ Compelling need to determine spin structure across F/AF interface (e.g. domain structure, magnetic roughness, etc.)

Need interface sensitive experimental technique

Measuring Reflectivity using resonance X-ray scattering technique

- Can quantitatively determine depth dependent magnetic density
- ➤ Interface sensitive
- > Element Specific
- ➤ Diffuse scattering lateral structures like domains, magnetic roughness etc.

The Sample

FeF₂ grown epitaxially on MgF₂, Co is polycrystalline

(001) – Easy axis of FeF₂, T_N = 78 K Exhibits **positive** exchange bias

➤ The thicknesses and roughness were constrained to be same for subsequent resonant reflectivity fits

The Experimental Procedure

Resonant X-ray scattering measurements performed on Beamline 4.0.2 at the ALS using Kortright endstation

Field of 1 T applied at 300 K along (001) direction

Sample field cooled through T_N to 20 K

Three types of measurements:

- (1). Hysteresis loops by switching incident beam polarization at L₃ edge of Co and Fe
- (2). Reflectivity measurements as function of Q_7 by switching applied field

Info about both pinned and rotating moments

(3). Measurement of diffuse scattering

FIG. 1 (color). Hysteresis loops at Q = 0.49 and 0.38 nm⁻¹ for Co (\blacksquare) and Fe (red \blacksquare), respectively. Inset: representations of the x-ray experiment and sample.

FIG. 2 (color). Spin density depth profiles for Co (blue) and Fe (red) spins obtained from the specular x-ray reflectivities (inset) at $H_{\pm} = \pm 796$ kA/m.

Diffuse Scattering at an Applied Field of 1 T

- Off specular scattering show peaks due to domains.
- ➤ Domains in the FM and AF are oppositely aligned
- Domains correlated with structural features (roughness or defect)

Conclusions

- ➤ Resonant X-Ray scattering combined with polarized neutron reflectivity is a powerful tool to determine in an element sensitive way the depth profileand direction of magnetism in a magnetic thin film structure
- For Co/FeF₂ system we found that
 - ✓ interface coupling is antiferromagnetic
 - ✓ existence of pinned and rotating moments for Fe
 - ✓ interface mostly contains rotating moments while the bulk contains pinned moments (from neutron scattering results)
 - ✓ exchange bias is due to exchange interaction between Fe pinned and Fe rotating moments
 - ✓ Diffuse scattering indicates formation of domains

Collaborators

- Sujoy Roy, Michelle Dorn UCSD
- Ivan Schuller, O.Petracic, Zhipan Li, Igor Roshchin UCSD
- Jeff Kortright, Karine Chesnel LBL
- Mike Fitzsimmons, Sungkyun Park LANL
- DOE/BES

Photon Correlation Spectroscopy

Overdamped Capillary Waves on Viscous Polymer Liquid Films

H.-J. Kim et al., Phys. Rev. Lett. 90, 068302 (2003)

Intensity Autocorrelation

$$g_2(\mathbf{q},t) = \frac{\langle I(\mathbf{q},t')I(\mathbf{q},t'+t)\rangle}{\langle I(\mathbf{q},t')\rangle^2}$$

$$g_2(t) = 1 + \beta \exp(-2\Gamma t)$$
$$= 1 + \beta \exp(-2t/\tau)$$

h = 840 Å, T = 160 °C

Scaling

At the values of q_{\parallel} probed here, it turns out that the second term on the right-hand side of Eq. (5) is negligible compared to the first. Similarly, it is well-justified to neglect the second term in the numerator of Eq. (1). It follows that

$$\tau \cong \frac{2\eta H}{\gamma q_{\parallel} F}$$

Tau vs. q

Tau vs. q for 65K (4Rg) and 400K (2Rg). Both films have similar thickness ~300A

$$\tau(k) = \frac{\tau_0(k)}{1 + \tau_0(k)(\mu/\eta)} = \frac{\tau_0(k)}{1 + \tau_0(k)/\tau_m}$$

$$\tau_{\scriptscriptstyle m} \equiv \frac{\eta}{\mu}$$
 Tau_m is defined to be Maxwell relaxation time for a viscoelastic liuqid.

$$F = \sinh(kh)\cosh(kh) - (kh)$$

$$H = \cosh^2(kh) + (kh)^2$$

$$\tau_0(k) = \frac{2\eta H}{\gamma kF}$$

Mu vs. Mw @ 185C

Note: Although shear modulus mu shows a scaling with Mw, but the fit is not good the error of the coefficient 'a' is very large.

Viscosity of 2Rg films @ 185C

Collaborators

- Zhang Jiang, (UCSD)
- Hyunjung Kim, Y. Lee, H.Lee (Sogang U.)
- Miriam Rafailovich, J. Sokolov, Kwanwoo Shin, Y.S. Seo, Chunhua Li (SUNY StonyBrook)
- Larry Lurio, Xuesong Jiao (NIU/APS)